Поиск по сайту
Навигация
Контакты
Арена
ООО "Арена"
г. Ижевск, ул. Маяковского 13
Email: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Телефон: (3412) 51-22-73
Факс: (3412) 51-22-73

Общее влияние качества глины в качестве добавки в смешанных цементных растворах

Применение глины в качестве добавки в смешанных цементных растворах наряду с диатомовыми землями и обычно применяемой известью. В первом приближении можно считать, что содержание глины по весу по отношению к цементу не должно превосходить 1:1 — 1,25 : 1. При большей величине добавки глины качество растворов в отношении их морозостойкости и коэфициента размягчения может значительно снизиться, почему в настоящее время еще нельзя судить о пригодности таких растворов для кирпичной кладки. Большое количество проведенных испытаний не выявило каких- либо отрицательных- свойств цементно-глиняных растворов, которые могли бы повлиять на суждение о возможности их применения. Наоборот, испытания доказали в известных пределах ценные качества цементно-глиняных растворов, не говоря уже о том, что в большинстве случаев стоимость их ниже аналогичных растворов на других добавках. Однако качество применяемой глины, повидимому, все же играет существенную роль, так как различные глины давали в наших опытах достаточно разные результаты. В частности, глины с большим содержанием органических веществ давали растворы с наихудшими показателями. Наилучшие результаты в различных случаях испытаний и по различным характеристикам показали различные глины. Однако, в большинстве эти лучшие показатели относились к случаям введения в растворы кирпичных глин. Несмотря на значительное различие в химическом составе применяемых нами глин, какой-либо определенной зависимости между качеством получаемых растворов и химическим составом глин установить в настоящее время не удалось. Это должно, новидимому, составить предмет дальнейших исследований в этой области.

Глина

Однако уже теперь можно наметить некоторые пути к оценке качества глин и встречающихся в них соединений, могущих оказать отрицательное влияние на свойства цементно-глиняных растворов. Глины, вообще говоря, по своему минералогическому и химическому составу настолько разнообразны, это обстоятельство дает некоторым исследователям возможность утверждать о «наличия стольких же разновидностей глины, сколько месторождений подвергается обследованию» (Г. Зальманг). Помимо этого, слоистый характер значительной части залеганий делает состав глины весьма пестрым даже и в одном и том же месторождении. Поэтому к выбору и применению глин в смешанных растворах следует относиться с очень большой осторожностью. К числу возможных примесей к глине, могущих оказать известное влияние на прочность и стойкость смешанного раствора во времени, следует отнести часто встречающиеся в них:
а) сульфиды — пирит и марказит;
б) органические вещества (растительные ткани, битуминозные вещества, углерод, гуминовые вещества, в частности, гумусовые кислоты;
в) некоторые легко растворимые соли в виде сульфатов железа (мелантерит), кальция (гипс), магния (эпсомит), калия и натрия, хлористый натрий и магний, растворимые силикаты щелочных и щелочно-земельных металлов, хлориды щелочных металлов.

Влияние пирита

Пирит в глине обычно встречается в виде зерен желтого цвета с металлическим блеском, кубиков и плоских розеток, видимых невооруженным глазом. Однако в так называемых квасцовых глинах пирит содержится и в мелкораспределенном состоянии, причем в этом случае он не может быть удален из глины даже путем отмучивания. По Райсу пирит можно встретить почти в каждом месторождении, но в глинах, залегающих у поверхности земли, его редко можно встретить в устойчивой форме, так как он на открытом воздухе быстро переходит в сульфат железа, а затем в лимонит (2Fe2Q3 3H2O), являющийся для смешанных растворов, по всем имеющимся данным, повидимому, безвредным.
Однако при разложении пирита и марказита освобождается серная кислота, образующая сульфаты с содержащимися в глине карбонатами кальция, магния или железа.
Надо отметить, что обычно глины, содержащие пирит или марказит, отбрасываются при производстве керамических изделий и идут в отвал. Во всяком случае глина ранее ее применения должна быть исследована на содержание в ней пирита.
Гуминовые кислоты являютея частью гуминовых веществ, растворимую в щелочах. По Свен-Одену можно вообще различать:

а) гумусовую кислоту, нерастворимую в воде, черно-бурого цвета;
б) торфяную, нерастворимую в воде, желто-бурого цвета,
в) фульво-кислоту, растворимую в воде, светложелтого цвета.

Гуминовые вещества, в свою очередь, делятся на гуминовые кислоты, гумины, которые растворяются в крепких щелочах лишь при долгом кипячении, и гумусовый уголь, вовсе нерастворимый в щелочах. Гуминовые кислоты при нагревании также переходят в нерастворимое в щелочах состояние. Химическое строение гуминовых кислот остается в общем недостаточно выясненным, однако считается доказанным присутствие в них группы СООН. Присутствие гуминовых кислот может быть оценено по показателю концентрации водородных ионов.
По данным проф. Швецова, можно вообще считать, что кислоты, содержащие только карбоксильную группу СООН, не оказывают особенно вредного действия на цементные растворы при добавлении их в воду затворения. Однако ввиду недостаточной выясненности химического строения гуминовых веществ и кислот вопрос о характере и степени возможного их влияния должен еще составить предмет планомерных исследований.

Отсутствие понижения прочности при затворении портландцемента на болотной воде, содержащей гуминовые вещества и, в частности, гуминовую кислоту, наблюдалось рядом исследователей. Д. Абрамс в 1924 году опубликовал результаты опытов по изучению прочности портландцементных растворов (в сроки от 90 дней до 2 1/2 лет), на основании которых можно установить отсутствие существенного понижения прочности растворов, затворенных на болотной воде.
Инженер Сперанский рядом экспериментов с естественными и искусственными водами, содержащими гуминовые вещества, также показал возможность использования их для затворения цементных растворов. В этих опытах исследуемых торфяниковых вод колебался от 4,6 до 6,3, окисляемость же находилась в пределах от 11 до 50 мг кислорода на литр воды. В глинах же, по данным Зальманга, содержание гуминовых веществ обычно находится в пределах 0—0,5% при pH от 7,1 до 4,8; лишь в особо загрязненных глинах, отличающихся по большей части темносерым или коричнево-черным цветом, содержание гуминовых веществ доходит до 2—2,5% при значении pH от 6 до 7.
В вышеуказанных опытах инж. Сперанского наблюдалось (в сроки до 90 дней) даже некоторое повышение прочности на сжатие образцов, затворенных на загрязненной воде, по сравнению с образцами, затворенными на дистиллированной воде (при хранении всех образцов в обычной чистой воде). Отсутствие серьезного влияния гуминовых веществ, введенных при затворении портландцемента, на прочность растворов можно объяснить наличием подавляющей массы цемента по сравнению с количеством вводимых и нейтрализуемых цементом реагентов.

Некоторое же наблюдаемое повышение прочности, применительно к общим данным проф. Б.Г. Скрамгаева и Г.К. Дементьева, может быгь объяснено некоторым повышением эффективности гидратации от действия кислот.
Таким образом можно считать, что гуминовые вещества и кислоты в случае нахождения их в воде затворения вряд ли должны оказывать серьезное отрицательное влияние на прочность строительных растворов для кладки. Все же в опытах глины с органическими примесями показывали наихудшие результаты и склонность к некоторому падению прочности в дальние сроки твердения.
Однако для глин с большим содержанием органических веществ нижеприводимые опыты Mache позволяют найти меры, способствующие уменьшению или устранению опасности от введения глин, содержащих в себе перегной.

В своих опытах Mache исследовал влияние введения чернозема, содержащего перегной, на прочность пластичных цементных растворов. Содержание перегноя в черноземе, определенное по методу М. Pietre, составляло 11,7%.

Рассматривая с этой точки зрения влияние присутствия перегноя, возможно думать, что и растворы с глинами, содержащими органические вещества, можно обезопасить от влияния последних путем введения дополнительной щелочи, в частности извести. Отсюда следует предположить, что трехкомпонентные растворы, предложенные проф. В.П. Некрасовым (цемент-известь-трепел или цемент-известь- глина), в некоторых случаях (введение небольших количеств извести при применении сырой глины и сырого трепела) с этой точки зрения смогут дать более высокие показатели прочности, нежели двухкомпонентные цементно-смешанные растворы.

Наряду с гуминовыми веществами в глине могут встречаться органические вещества и в других формах: а) в виде растительных тканей (листья, стебли, корни, куски древесных стволов), которые легко могут быть изъяты из глины при ее подготовке; б) в виде органических веществ битуминозного характера, влияние которых на качество цементного раствора может считаться вредным лишь в редких (например, в весьма вредной форме бурого угля) случаях;
в) в виде твердого углерода в модификациях, сходных с антрацитом, что не должно считаться вредным.

Так как значительное содержание подобного рода органических веществ характеризуется сероватой, синевато-серой и черной окраской глины, а иногда и видимыми вкраплениями, то необходимо воздерживаться от применения подобных глин для строительных растворов. Глины же иного цвета было бы желательно проверять на содержание в них органических веществ и устанавливать степень кислотности путем определения показателя pH (впредь до разработки и проверки более простых приемов исследования).

Надо отметить, что прокаливанием глины при температуре красного каления или длительным нагреванием при температуре около 250° (например при сушке перед помолом) можно освободиться от значительной части органических веществ.
В связи с этим стедует отметить, что, повидимому, применение глин, активизированных путем прокаливания, как это предлагалось вышеупомянутой инструкцией В.П. Некрасова (1933 г.), может быть уместным и выгодным в целом ряде случаев.
Наиболее опасными для цементно-глиняных растворов примесями в глине могут явиться, помимо органических веществ, легко растворимые соли. Органические вещества могут непосредственно вызывать некоторое понижение прочности раствора, наличие же растворимых coелей может проявляться с течением времени и привести к последующему выветриванию раствора в силу явлений миграции солей. Под выпетриваннем строительных материалов обычно понимается потеря ими прочности и частичное или полное разрушение под влиянием атмосферных и других факторов. Явления выветривания строительных растворов вообще в той или иной степени встречаются сравнительно часто, причем основные причины такого выветривания могут быть разбиты на две важнейших категории:

1) Плохое смешивание раствора, ведущее к (наличию ослабленных участков, выветривающихся под влиянием, главным образом, действия мороза; при плохом перемешивании раствора не может быть осуществлено надежное и полное сцепление элементов кладки. При отсутствии же должного сцепления легко возникают трещины и повреждения в кирпичной стене даже от незначительных осадков фундамента. Эти трещины и являются очагами распространения явлений выветривания под влиянием последующего попадания воды в подобные трещины и замерзания их.

2) Выветривание в силу химических и физических влияний имеет место, в частности, при наличии в компонентах растворов сульфатов, карбонатов и хлоридов. Из вышеуказанных возможных растворимых солей в отношении явления выветривания наиболее безвредным является карбонат кальция, а затем сульфат кальция и сульфат калия. Наиболее же опасными солями (в этом отношении явлются сульфаты натрия, например, глауберовая саль (Na2SQ4 . 10Н2О), и сульфаты магния. Последняя соль особенно опасна в соединении с сульфатом калия, так как получающаяся тройная соль (K2S04 . MgS04 . 6Н2О) содержит значительное количество воды и кристаллизуется с значительным увеличением объема, еще большим, чем при кристаллизации сульфатов натрия.

В глине из сульфатов чаще всего встречается гипс, причем по данным Dawit и ряда других исследователей. содержание солей серной кислоты в глинах сильно колеблется и может быть довольно значительным. Например, по данным Nirsch. содержание SO3, в глине одного и того же месторождения колебалось от 0,016 до 0,271 %. Нужно, впрочем, отметить, что нередко и в обожженном кирпиче содержание SO3 доходит до 0,2—0,3%, что объясняется применением иногда для обжига угля со значительным содержанием соединений серы. Особенно часто высокое содержание S03 имеет место в сравнительно слабо обожженных сортах кирпича.
Таким образом выветривание кладки под влиянием сульфатов может иметь место также и вследствие наличия их в штучных элементах кладки.
Наряду с этим нужно отметить, что и в затвердевшем цементе, употребляемом для кладки, также может находиться ряд соединений, способствующих появлению выцветов. Разрушение раствора в швах кладки от явлений выцветания в общем происходит нижеследующим образом: влага, введенная в стену вместе с раствором, растворяет имеющиеся в наличии растворимые соли. По мере высыхания кладки с поверхности происходит движение растворимых солей по направлению к наружным поверхностям стены. В дальнейшем растворимые соли подходят к поверхности стены, где кристаллизуются в порах раствора и на поверхности. Так как эта кристаллизация происходит для значительной части растворимых солей с большим увеличением объема, то такая кристаллизация ведет к постепенному разрушению шва с поверхности, к отпаду штукатурки, частичному выкрашиванию кирпича, появлению ясно видимых налетов и т.п.

Явления выветривания особенно усиливаются при неизбежных колебаниях влажности, так как при изменении влажности среды большинство вышеуказанных солей то теряет, то вновь присоединяет кристаллизационную воду, меняя при этом объем и вызывая серьезные внутренние напряжения в теле раствора.
Простейшие исследования глины на содержание в ней соединений, способных (произвести выцветы на кладке, можно произвести нижеследующим способом: берется стеклянный цилиндр (или, что лучше, колба с узким горлышком) и наполняется дестиллированной водой; на верхнее отверстие цилиндра или колбы плотно укладывается притертый кирпич; после этого цилиндр переворачивается таким образом, чтобы дестиллированная вода проникла в кирпич. В дальнейшем кирпич просушивается, причем в случае наличия в нем растворимых солей таковые выступают в виде беловатого налета. Для целей испытания глины предварительно должен быть отобран кирпич, не имеющий такого налета. Далее испытуемая глина просушивается, размельчается и затворяется большим количеством дестиллированной воды. Полученное жидкое глиняное молоко выливается иа кирпич, предварительное испытание которого показало отсутствие в нем растворимых солей. В том случае, если в глине находятся растворимые соли, таковые проникают в кирпич и по просушивании выступят на его поверхности в виде беловатого налета. Наличие растворимых солей в глине можно оценить также с помощью выпаривания остатка из воды, отфильтрованной от глины. Наличие осадка укажет на наличие растворимых солей.

Из прочих примесей, встречающихся в глине, кроме вышеуказанных, большинство возможно даже признать полезным. К числу (подобных примесей относятся: кварц в виде тонких частиц и зерен обычного песка, кремнезем в амофорном состоянии (встречающийся обычно в глине лишь в очень небольших количествах), гидраты кремнезема, слюды, гидрослюды.
Влияние слюды оценивалось профессором Пономаревым, который при своих исследованиях системы цемент-слюда отмечал, что небольшие добавки измельченной слюды (в количестве 2 — 3%) не оказывают существенного влияния на прочность раствора, но повышают довольно резко связность получаемой массы.

Более значительные добавки слюды довольно серьезно понижали величины временного сопротивления растяжению и изгибу испытуемых образцов. Ожидать какого-либо вредного химического влияния слюды на вяжущую часть раствора нет оснований, если принять во внимание чрезвычайно высокую степень химической инертности слюд вообще. Наиболее опасным действием значительного количества слюды может явиться, как показывают исследования G.Kathrein, понижение морозостойкости раствора.

Так как глинах содержание слюды в огромном большинстве случаев весьма невысоко, то ожидать с этой стороны вредного влияния глины на смешанные цементно-глиняные растворы нет оснований. Гидраты глинозема, кремнезема и Окиси железа, иногда присутствующие в глинах в незначительном количестве, могут, по данным Rodt, оказать весьма благоприятное влияние на свойства раствора и, в частности, на его (прочность в дальние сроки твердения, связанного с высыханием.

Исследования, произведенные Михаэлисом над гелеобразными гидратами окиси кальция, глинозема, кремнезема и гидратом окиси железа, подвергнутыми высушиванию с целью частичного обезвоживания, показали возможность получения агрегатов весьма высокой прочности, особенно из гелей гидратов кремнезема и окиси железа. Влияние постоянно встречающейся в глинах окиси железа можно оценить и по опытам Грюна. По этим опытам введение 30% молотой окиси железа (считая от веса цемента) в цементно-песчаные растворы 1 : 3 дает даже некоторое повышение прочности растворов на растяжение при весьма незначительных изменениях прочности на сжатие (10%). Таким образом влияние этой составляющей глины не может быть признано вредным.

Содержащиеся в глинах тонкая пыль и тонкий песок по этим же испытаниям Грюна, а также по ряду других исследований оказывают также скорее положительное, чем отрицательное действие «а плотность и прочность цементных растворов, особенно в длительные сроки твердения. Однако, надо отметить, что это будет иметь место, понятно, не при всяких количествах введенной добавки, а лишь в тех случаях, когда гранулометрический состав строительного раствора будет находиться в определенных пределах. (Кроме того надо подчеркнуть, что по вышеприведенным исследованиям Ферэ добавление тонких песчаных частиц несравненно более повышает сопротивление строительных растворов растяжению и величину сцепления, чем сопротивление сжатию. Это указывает, что вообще добавка мелких частиц способна оказывать достаточно благоприятное влияние на качества раствора в кладке, но что назначение величины добавки шины должно производиться с полным учетом получаемого гранулометрического состава строительного раствора. Гидрослюды, присутствующие всегда в глинах, (гидроокись железа, присутствующие в некоторых глинах кальцит, доломит, глауконит, полевые шпаты являются, повидимому, безвредными отощающими примесями.

В общем, при применении глин в смешанных растворах, с большинством из этих примесей приходится считаться, как с (грубозернистыми примесями, частично заменяющими собой песок в строительных растворах. При подобном подходе сильно песчанистые глины должны «водиться в строительные растворы с обязательным учетом содержания в них крупнозернистых включений, т. е. с соответствующим увеличением дозировки такой песчанистой глины и с уменьшением количества вводимого песка.

Как видно из вышеприведенного беглого перечня, наибольшее внимание при выборе глин должно быть обращено, повидимому, на содержание в них растворимых солей и, в частности, сульфатов. Опыты, проведенные в Промакадемии имени тов. Сталина по применению сильно засоленных лессов, показали, что наличие в строительном растворе значительного количества растворимых солей приводит к появлению чрезвычайно сильно развитых выцветов на поверхности образцов, сопровождающихся размягчением и разрыхлением наружной их корки. В этом отношении особенно неприятными оказались сернокислые соли натрия, магния и калия. Так как растворимые соли легко могут оказать вредное влияние на раствор и кладку (явление эффлоресценции — появление выцветов), то глину, содержащую значительное количество таких солей можно использовать лишь после длительного ее вылеживания, способствующего выщелачиванию сульфатов или после обработки ее бариевыми соединениями.

Однако и тот и другой приемы могут дать эффект лишь в случае относительно невысокого содержания в глине растворимых солей и вдобавок лишь по отношению к некоторым из них. Опасность непосредственного влияния сульфатов на портландцемент в смешанном растворе несколько, повидимому, снижается как вследствие предполагаемого действия глины, аналогичного действию слабых пидравшических (добавок, так и особенно в случаях применения растворов для кладки, находящейся в воздушных условиях. Так как пирит, а также гипс и другие сульфаты являются нежелательными примесями к глине и при производстве из нее кирпича, то всякая кирпичная тайна обычно подвергается оценке с точки зрения наличия или отсутствия в ней подобных вредных минеральных примесей, почему данные и подобных испытаний могут быть использован и при выборе глин для растворов.