Поиск по сайту
Навигация
Контакты
Арена
ООО "Арена"
г. Ижевск, ул. Маяковского 13
Email: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Телефон: (3412) 51-22-73
Факс: (3412) 51-22-73

Высокопрочный бетон, сверхпрочный бетон

1. Уровень развития и нормативные документы

Основной тенденцией в строительстве является использование бетона с высоким пределом прочности при сжатии. В настоящее время высокопрочным считается бетон, предел прочности при сжатии которого находится выше общепринятого уровня и составляет более 60 Н/мм2. При применении обычных исходных веществ и способов укладки создаются строительные конструкции с пределом прочности при сжатии до 150 Н/мм . В наши дни ведется разработка строительных растворов и бетонов с пределом прочности до 800 Н/мм2.

Термин «сверхпрочный бетон» указывает на то, что при различном использовании критерии долговечности имеют первостепенное значение и, соответственно, представляют интерес для определения прочности, смотри таблицу 1. Так как сопротивление бетона внешним воздействиям в значительной степени определяется особо плотной структурой, то с точки зрения бетонной технологии, как правило, нет различия между высокопрочным и сверхпрочным бетоном. Иногда понятие «сверхпрочный бетон» используется в отношении других бетонов, состав и свойствам которых не соответствуют общепринятым стандартам, например, самоуплотняющийся бетон. Эти виды бетона в спецификации не рассматриваются. Во внимание принимается обычный высокопрочный бетон с классами прочности от C 55/67 до C 100/115, а также легкий высокопрочный бетон с классами прочности от LC 55/60 до LC 80/88. В рамках стандарта высокопрочный бетон может использоваться для производства неармированного бетона, железобетона и предварительно напряженного бетона. Для использования бетона классов

Таблица 1: Определение высокопрочного и сверхпрочного бетона

 

Обозначение

высокопрочный бетон

сверхпрочный бетон

определение

предел прочности при сжатии > 60 Н/мм2

бетоны, разработанные в соответствии со специальными высокими требованиями к использованию,

например непроницаемость, сопротивление физическому или химическому воздействию прочность

преимущественные области применения

несущая способность

долговечность

высокая прочность

плотная структура

прочности C 90/105, C 100/115, LC 70/77 и LC 80/88 требуются общие допуски строительного надзора, а в отдельных случаях разрешения. Новое поколение норм пришло на смену директиве по высокопрочному бетону, которая дополнила стандарт DIN 1045:1988 для обычного бетона классами прочности с B 65 по B 115. Для переходного периода до конца 2004 года, определенного строительным надзором, могут использоваться на выбор как старые, так и новые поколения норм и стандартов.

2.Основные положения по выбору исходных веществ

2.1 Водоцементное отношение

При производстве высокопрочного бетона учитывается коэффициент водоцементного отношения < 0,35. Нижний предел водоцементного отношения определяется в настоящее время степенью достижения достаточной удобоукладываемости бетонной смеси и равен 0,20.

2.2 Цемент

При производстве высокопрочного бетона может использоваться стандартный цемент. До этого времени в Германии применялись, например, портландцементы CEM I 42,5 R, CEM I 52,5 R и CEM I 52,5 N, а также цементы, содержащие гранулированный доменный шлак (CEM II-S, CEM III). Для обеспечения достаточной удобоукладываемости бетонной смеси целесообразно соблюдать низкое водопотребление. Как правило, содержание цемента в бетонной смеси составляет от 350 кг/м3 до 500 кг/м3.

2.3 Зернистый заполнитель

Для высокопрочного бетона характерно уменьшение разницы между прочностью зернистого заполнителя и цементного камня, поэтому в нем по сравнению с обычным бетоном повышается влияние зернистых заполнителей на прочностные характеристики и деформацию. Для получения предела прочности на сжатие, превышающего 100 Н/мм2, необходимо использовать дробленый зернистый заполнитель.
Имеется положительный опыт применения базальта, диабаза и мелафира. Кривая гранулометрического состава должна проходить в зоне кривых A и B, причем для фракции зернового состава < 2 мм - ближе к кривой B, а для фракции зернового состава > 2 мм - ближе к кривой A. При этом содержание мелкодисперсной взвеси в зернистом заполнителе должно быть низким. По причине отсутствия продолжительного опыта в стандарте [2] определено использование зернистого заполнителя в отношении щелочных реакций.

2.4 Тонкомолотые добавки

Типичным отличием высокопрочного бетона от бетона обычной прочности наряду с низким водоцементным отношением является добавление силикатной пыли s (называемой также кремнеземная пыль и микросилика). Однако бетон с классом прочности C 55/67 и C 60/77 может производиться и без добавления кремнеземной пыли. Кремнеземная пыль, средний размер частиц которой соответствует одной десятой среднего размера частиц цемента, представляет собой побочный продукт, образующийся в процессе очистки отработанных газов при производстве кремния и феррокремния. Использование кремнезема в бетоне регулируется общими допусками, выданными органами строительного надзора, или европейскими техническими допусками. В рамках Европейской стандартизации допуск заменяется стандартом DIN EN 13263. Действие кремнеземной пыли в бетоне основывается на трех эффектах: заполнение объема пор между частицами цемента, цементный камень приобретает более плотную структуру,
- пуццолановая реакция с гидроксидом кальция, повышающая прочность цемента,
- улучшение связи между зернистым заполнителем и цементным камнем.

Таблица 2: Общие правила использования кремнеземной пыли s и летучей золы f

Марка цемента

s/z

[весовая доля]

f/z

[весовая доля]

CEM I

 

≤ 0,11

 

≤ 3 (0,22 - s/z)

CEM II-S
CEM II-T
CEM II/A-LL CEM III/A

 

≤ 3 (0,15 - s/z)

цемент с
кремнеземной
пылью в
качестве
основного
компонента
все другие марки цемента

не допустимо использование кремнеземной пыли в качестве тонкомолотой добавки

≤ 0,15 для CEM II/A-D

не допустимо общее использование летучей золы и кремнеземной пыли

Максимальное количество добавляемой кремнеземной пыли, необходимое для обеспечения долговечности бетона (антикоррозионная защита арматуры), составляет 11 % от массы цемента. При производстве бетона возможно одновременное использование кремнеземной пыли и летучей золы, однако при этом ограничено их количество, см. таблицу 2.
Кремнеземная пыль используется в виде порошка (спрессованная, непрессованная) и в виде суспензии. По причине легкости и удобства в использовании применяется, как правило, суспензия кремнеземной пыли, например, в пропорции 50 % твердого вещества и 50 % воды. Бетон, в состав которого входит кремнеземная пыль, имеет темный цвет. Светлый высокопрочный бетон производится при добавлении кремнеземной кислоты (наносилика) или метакаолина. Кремнеземная кислота может использоваться в качестве добавки в бетон (стабилизатор).

2.5 Добавки

Укладка бетона с очень низкой теплотой гидратации не возможна без добавления пластификаторов или разжижителей. Надежная укладка бетонной смеси на строительной площадке предполагает мягкую, в лучшем случае текучую консистенцию (например, F4, F5). При снижающемся водоцементном отношении повышается количество добавляемых веществ. Имеется положительный опыт использования разжижителей на основе поликарбоксилата или на основе комбинации смол из нафталина и меламина. Для обеспечения достаточного времени укладки в бетонную смесь целесообразно добавлять замедлитель.
Количество добавляемых добавок необходимо ограничивать
- до 70 г/кг, соответственно до 70 мл/кг цемента при дозировании разжижителя и
- до 80 г/кг, соответственно до 80 мл/кг цемента при дозировке нескольких видов добавок.

2.6 Состав бетонной смеси

Во время производства высокопрочного бетона необходимо проводить контроль предусмотренных исходных веществ (вид, производитель, место добычи). При этом следует учитывать добавление разжижителей на строительной площадке.
В большинстве случаев проектирование высокопрочного бетона осуществляется на основании уже созданных бетонных смесей. В таблице 3 представлены составы бетонных смесей с различными классами прочности, дающими представление об исходных данных для предварительных исследований или первичных испытаний. В зависимости от исходных веществ в значительной степени меняется состав бетонной смеси.

Взаимосвязь предела прочности график по бетону Рис. 1: Взаимосвязь предела прочности на сжатие и эквивалентного водоцементного отношения в высокопрочном бетоне
Таблица 3: Исходные данные по составу бетонной смеси

Прочность бетона

 

 

C

C

C

C

C

C

C

 

55/67

60/75

60/75

70/85

70/85

80/95

100/115

Содержание цемента при

CEM I 42,5 R

кг/м3

420

340

-

420

-

-

-

CEM I 52,5 R

кг/м3

-

-

-

-

-

450

450

CEM
III/A42,5 R

кг/м3

-

-

380

-

450

-

-

Содержание кремнеземной пыли (твердое вещество) s

Содержание летучей смолы f

Содержание воды

Разжижитель

кг/м3

-

30

30

40

40

45

45

кг/м3

-

80

-

-

-

-

100

кг/м3

125

123

125

135

112

126

119

л/м3

от 4 л/м3 до 10 л/м3 поликарбоксилат, от 10 л/м3 до

 

20 л/м3 разжижитель на основе меламина и нафталина

Замедлитель

кг/м3

-

-

-

-

-

да

да

Содержание
зернистого
заполнителя

0/2 (песок)

кг/м3

650

640

630

630

620

660

830

2/8 (гравий)

кг/м3

420

410

410

405

400

355

-

8/16 (гравий)

кг/м3

790

880

770

765

725

-

-

2/8 (щебень)

кг/м3

-

-

-

-

-

-

480

8/16
(щебень)

кг/м3

-

-

-

-

-

760

770

Эквивалентное водоцементное отношение (w/z)eq согласно уравнению (1)

 

032

0,35

0,32

0,32

0,27

0,28

0,26

Растекаемость (добавление разжижителя через 45

a10

см

45.55

~ 45

a45. FM

см

45...55
55...65
45...55

~ 55

a90

см

45.55

~ 45

минут после изготовления смеси)

 

 

 

 

Плотность свежеприготовленной бетонной смеси

кг/дм3

2,41

2,39

2,40

2,41

2,40

2,41

2,48

Предел прочности при сжатии (кубик с длиной ребра 150 мм, выдерживание в воде)

1 d

Н/мм2

30

35

35

40

35

60

65

7 d

Н/мм2

60

75

70

80

75

100

115

28 d

Н/мм2

80

90

90

100

100

125

135

56

Н/мм2

85

95

100

110

115

130

140

Для определения необходимого эквивалентного водоцементного отношения можно использовать рис. 1, при этом учитывается влияние добавок на прочностные характеристики:

влияние добавок на прочностные характеристики формула бетона

Высокое содержание мелкодисперсной взвеси ведет к образованию клейких бетонов,
плохо подвергаемых укладке, и оказывает отрицательное влияние на характеристики бетона при деформации. Поэтому в высокопрочных бетонах ограничено максимально допустимое содержание мелкодисперсной взвеси и мелкого песка, таблица 4.

Таблица 4: Максимально допустимое содержание мелкодисперсной взвеси в высокопрочном и легком бетоне

Содержание
цемента 1)
[кг/м2]

Максимально допустимое содержание мелкодисперсной взвеси [кг/м2] при максимальном размере зерна зернистого заполнителя

16 - 63 мм

8 мм

≤ 400

500

500

450

550

550

≥ 500

600

600

3. Производство и укладка бетона

3.1 Дозировка и смешивание

Дополнительный процесс дозирования заключается в добавлении суспензии кремнеземной пыли. Она поставляется, например, в контейнере объемом 1 м3 и должна храниться в условиях, защищающих ее от замерзания. При хранении свыше 7 дней может потребоваться гомогенизация. Вязкая, клейкая консистенция свежеприготовленной бетонной смеси требует повышенной интенсивности смешивания. В зависимости от состава бетонной смеси и вида смесителя время смешивания после добавления всех исходных веществ составляет от 60 (для легкого бетона от 90) до 180 с. Для оптимальной гомогенизации мелких веществ наиболее благоприятной оказывается следующая последовательность дозирования: зернистый заполнитель, вода, а затем летучая зола и суспензия кремнеземной пыли. Для получения оптимального эффекта от добавок их необходимо добавлять после воды и кремнеземной пыли. Последовательность и время смешивания определены в соответствующей инструкции.

При производстве высокопрочного бетона из-за клейкой консистенции смеси может потребоваться дополнительная очистка смесителя. Смешивание с подачей пара не допустимо.
В товарный бетон и бетон, транспортировка которого осуществляется на дальние расстояния, для достижения мягкой или текучей консистенции, удобной для укладки, разжижитель часто добавляют на строительной площадке. Разжижитель должен равномерно распределяться в барабане бетоносмесителя, например, с помощью распылительной трубки. Минимальное время смешивания составляет 1 мин/м3 бетона, но не менее 5 мин. Перед наполнением бетоносмеситель необходимо освободить от оставшейся промывочной воды. О времени бетонирования завод товарного бетона необходимо проинформировать как минимум за два дня до начала работ, чтобы приготовить исходные вещества, приборы и оборудование.

3.2 Укладка

При укладке высокопрочный бетон проявляет нетипичные свойства. Поэтому на стройке
- укладкой смеси должны руководить работники (начальник строительного участка, бригадир), имевшие опыт работы по укладке бетона марки > C 30/37 и
- перед каждым этапом бетонирования необходимо проводить инструктаж работников строительного участка (данные необходимо документировать).
Целесообразной, и, как правило, необходимой, является проверка на практике свойств бетона в отношении пригодности к перекачке и удобоукладываемости, проводимая персоналом строительной площадки на предусмотренном для этого оборудовании. В частности, необходимо согласовать обработку поверхности плоских строительных деталей (затирка поверхности, создание уклона, профилирование и т.д.). Подача высокопрочного бетона может осуществляться как с помощью бадьи, так и с помощью насоса, если использование того или иного способа было определено при проведении испытаний по укладке. Если в бетонную смесь не добавлялся замедлитель, то следует рассчитывать на более быстрое схватывание высокопрочного бетона по сравнению с бетоном обычной прочности. Укладка высокопрочного бетона в скользящую или подъемно-передвижную опалубку возможна в том случае, если свежеприготовленная бетонная смесь имеет низкую вязкость. При снижении водоцементного отношения и повышении содержания кремнеземной пыли увеличивается энергия уплотнения, необходимая для удаления воздуха из бетона. Расстояния между местами погружения внутреннего вибратора должны быть равны пятикратному диаметру булавы и составлять от 30 до 50 см.

3.3 Выдерживание бетона

Использование минимального времени выдерживания бетона согласно 1045-3:2001 означает, что во многих случаях уже после первого дня данный этап в процессе бетонирования может быть закончен. Вследствие короткого времени выдерживания высокопрочный бетон в зоне поверхности не достигает полной эффективности. Рекомендуемое время выдерживания внутренних строительных элементов составляет как минимум 2 дня, а наружных - 3 дня. Благоприятно на качестве бетона сказывается выдерживание с подводом воды,
результате низкого водоцементного отношения, что может привести к образованию микротрещин. Мероприятия по выдерживанию бетона необходимо начинать проводить сразу же после его уплотнения.

3.4 Обеспечение качества

При производстве высокопрочного бетона стандартами DIN EN 206-1:2001 и DIN 1045-2:2001 [1, 2] устанавливаются высокие требования к контролю продукции. Для непрерывного обеспечения качества продукции необходимо составить план обеспечения качества, который будет включать в себя следующую информацию:
• поставка исходных веществ,
• производство и транспортировка бетона,
• обработка бетона на строительной площадке или на заводе готовых конструкций,
• действия при отклонении от заданного плана,
• определение предельных значений наконец, секции бетонирования и личную ответственность.
позволяющее избежать его высыхания в

Таблица 5: Классы прочности высокопрочного бетона (Образцы: цилиндр (0 150 мм, высота 300 мм) или кубик (длина ребра 150 мм, выдерживание в соответствии с EN 12390-2))

Класс прочности бетона

Характеристическая прочность цилиндра на сжатие
fck
[Н/мм2]

Характеристическая прочность кубика на сжатие fck, cube [Н/мм2]

Средний показатель прочности цилиндра на сжатие fck [Н/мм2]

Средний показатель прочности кубика на сжатие
fck, cube
[Н/мм2]

C 55/67

C 60/75

C 70/85

C 80/95

C 90/105

C 100/115

 

55

60

70

80

90

100

 

67

75

85

95

105

115

 

63

68

78

88

98

108

fcm = fck + 8

4,2

4,4

4,6

4,8

5,0

5,2

fctm = 2.12 In (1 +
fcm/10)

Таблица 6: Частота отбора проб для оценки соответствия высокопрочного бетона
Производство

 

Частота отбора проб

первые 50 м3
продукции

после первых
50 м3

Первичное производство (до получения как минимум 35 результатов)

3 пробы

продукции 1)

1/100 м2 или 1/день производства

Непрерывное производство 2) (когда получено минимум 35 результатов)

 

 

1/200 м2 или 1/день производства

 

1) Отбор проб должен осуществляться на протяжении всего процесса, на каждые 25 м3 должно быть отобрано не более одной пробы
2) Если стандартное отклонение последних результатов превышает 1,37 а, то частоту отбора проб на следующие 35 результатов испытания следует увеличить на количество, необходимое для первичного производства.

Таблица 7: Критерии соответствия прочности высокопрочного бетона на сжатие

Производство

Количеств о n результато в

Критерий 1

Критерий 1

Среднее значение n результато
в fcm
[Н/мм2]

Каждый
отдельный
результат испытания fci [Н/мм2]

Первичное
производство

3

≥ fck + 5

≥ fck - 5

Непрерывное
производство

15

≥ fck + 1,48

δ,
δ≥ 5 [
Н/мм2]

≥ 0,9 fck

Таблица 8: Частота проведения испытаний и критерии приемки для результатов испытаний на прочность высокопрочного бетона при сжатии и использовании товарного бетона (должны быть выполнены оба критерия)

Количество отдельных значений

 

Критерий 1 Среднее значение fcm

для n отдельных значений [Н/мм ]

Критерий 1 Каждое отдельное

значение fci [Н/мм2]

Частота проведения испытаний

 

от 3 до 4

≥ fck + 1

≥ fck - 4

≥ fck- 4

требование
отсутствует

для каждой партии бетона минимум 3 образца для испытаний

- каждые 50 м3

- каждый день бетонирования

от 5 до 6

≥ fck + 2

> 6

формула

Проверка определяющих свойств свежеприготовленной бетонной смеси и жесткого бетона в процессе бетонирования высокопрочного бетона осуществляется в соответствии с классом контроля 3.