Поиск по сайту
Навигация
Контакты
Арена
ООО "Арена"
г. Ижевск, ул. Маяковского 13
Email: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Телефон: (3412) 51-22-73
Факс: (3412) 51-22-73

Трещины в бетоне

Трещины могут ухудшить несущую способность, пригодность к использованию и долговечность бетонных сооружений. В принципе, образования трещин избежать нельзя, однако они не всегда являются опасными. Их ширина должна быть безопасной, необходимо следить за тем, чтобы трещины были своевременно залиты.

1. Причины возникновения трещин

Трещины в свежеприготовленной бетонной смеси возникают в результате быстрого уменьшения объема поверхностного бетонного слоя вследствие обезвоживания. Этому высушиванию способствуют низкая влажность воздуха, ветер, солнечные лучи и неблагоприятная температура окружающей среды.
Трещины в свежем и затвердевшем бетоне образуются тогда, когда растягивающее напряжение, вызванное внутренним напряжением, давлением и внешними нагрузками, достигает имеющийся до этого момента предел прочности бетона.
Основные причины, признаки наличия трещин, а также данные о времени их возникновения представлены в таблице 1. В данной таблице не рассматриваются химические причины образования трещин, такие как щелочная реакция или образование сульфатов. В спецификации даются ссылки на соответствующую литературу, описывающую эти реакции. На практике трещины образуются в результате усадки, прежде всего, в результате преждевременной усадки, или выделения теплоты гидратации.

Стр
ока

Причины
образования
трещин

Признаки
образования
трещин

Время
образования
трещин

Повлиять на образование трещин можно с помощью

1

 

Усадка свежего бетона

 

Продольные трещины над верхней арматурой: в зависимости от обстоятельств ширина трещин составляет несколько

миллиметров; глубина трещин в целом
незначительная,
при
неблагоприятных условиях несколько сантиметров

В течение первых часов после
бетонирования до тех пор, пока бетон сохраняет пластичность

 

Состава бетонной смеси (содержание воды, кривая гранулометрического состава), укладки бетона,
дополнительное
уплотнение

 

2

Преждевременная
усадка
(пластическая

усадка)

Поверхностные трещины, прежде всего в плоских строительных элементах, часто без ярко выраженной направленности, в зависимости от обстоятельств ширина трещин превышает 1 мм, глубина трещин незначительная

Как в строке 2

 

Предотвращения быстрого высыхания с помощью защиты от быстрой потери влаги (обусловлена низкой относительной влажностью воздуха), ветра, солнечных лучей и/или высокой температуры. Кроме этого, смотри строку 2

3

Выделение теплоты гидратации

Поверхностные трещины, сквозные трещины, трещины при изгибе, в зависимости от обстоятельств свыше 1 мм

В течение первых дней после
бетонирования

Состава бетонной смеси, вида, состава и класса прочности вяжущих веществ, возможного охлаждения (в массивных строительных элементах), выдерживания, арматуры (количество, расположение), выбора сектора бетонирования (швы)

4

Усадка (усадка в
результате
высыхания)

Как в строке 3

Через несколько недель или месяцев после бетонирования

Состава бетонной смеси, арматуры, относительной влажности воздуха; вакуумирования; расположения швов

5

Влияние температуры окружающей среды

Трещины при изгибе и сквозные трещины, в зависимости от обстоятельств свыше 1 мм, возможны также поверхностные трещины

В любое время в течение всего срока
эксплуатации сооружения, при изменении температуры

Армирования, состава бетонной смеси, предварительного напряжения, расположения швов

6

 

Изменение условий опирания (например, в результате усадки, деформация опоры)

Трещины при изгибе и сквозные трещины, в зависимости от обстоятельств ширина превышает 1 мм

В любое время при изменении условий опирания

 

Статической системы (коэффициент жесткости), кроме этого смотри строку 5

 

7

Собственное
напряженное
состояние (например, в результате
ограничения
деформации,
перераспределение
внутреннего
усилия,
нелинейные
характеристики
несущей
конструкции)

Различные, в зависимости от причины возникновения

В любое время при растяжении, вызывающем образование
трещин

Целесообразный выбор и расположение арматуры

 

8

Внешняя (прямая) нагрузка

Трещины при изгибе, сквозные и микротрещины, трещины сдвига

В любое время в
процессе
эксплуатации

Целесообразный выбор и расположение арматуры

9

 

Мороз

 

Преимущественно трещины вдоль арматуры и/или растрескивания в зоне пустот, наполненных водой

В любое время при морозе

 

Уменьшение пустот, заполненных водой

 

10

 

Коррозия арматуры

 

Трещины вдоль арматуры и по углам
строительных
элементов,
растрескивания

через несколько лет

 

Толщины и качества бетонного покрытия

 


Изменение температуры при нагревании
Изменение температуры бетона
Рис. 1: Изменение температуры при нагревании и охлаждении

Рис. 2: Изменение температуры и внутренние напряжения на примере АТ

Усадка

С помощью усадки обозначается уменьшение объема бетона вследствие высыхания. Процесс высыхания начинается на наружной поверхности и распространяется вовнутрь бетона. Наружная поверхность начинает сжиматься, однако еще не высохший внутри бетон препятствует этому. Этот процесс, возникающий в свежем бетоне, и обозначается как преждевременная или пластичная усадка. Последующее высыхание бетона, продолжающееся недели и месяцы, охватывает все поперечное сечение и обозначается как усадка в результате высыхания.
Сужение, которое иногда путают с усадкой, образуется в результате химических связей воды в продуктах гидратации цемента. Процесс происходит внутри цементного камня и не оказывает влияния на внешние размеры бетонной конструкции.

Выделение теплоты гидратации

В массивных строительных элементах по причине больших размеров теплота, образуемая при затвердевании бетона вследствие гидратации цемента, медленно выделяется в воздух или в прилегающие элементы конструкции, таким образом, ядро строительного элемента нагревается значительно сильнее, чем оболочка (внутренне давление «поперечное напряжение»). Внутри поперечного сечения разница температур ведет к образованию сжимающего напряжения, а по краям - к образованию растягивающего напряжения (рис. 1 и 2).

Рис. 3: Изменение температуры и характеристика напряжения в свежем бетоне при ограниченной деформации
Таблица 2: Виды, формы проявления и признаки различных трещин согласно

Строка

Виды трещин

Формы проявления

Описание

1

Трещины, образуемые вследствие реологических свойств

Поверхностные трещины в виде сетки

Проявляются, прежде всего, на поверхности плоских деталей. Они могут повторять рисунок арматуры, а также располагаться хаотично. В большинстве случаев их глубина ограничена.

2

Усадочные
трещины

При уменьшении объема вследствие усадки трещины проявляются там, где армирование выполнено ненадлежащим образом. В большинстве случае трещины проходят по всей толщине строительного элемента и располагаются хаотично.

3

Трещины
вдоль
арматуры

Часто проходят поверх верхних арматурных стержней на неопалубленной поверхности строительного элемента. В зависимости от причины возникновения под арматурой образуются пустоты.

4

Трещины, образуемые вследствие внешней силы или давления

Трещины при изгибе

Проходят примерно вертикально по отношению к арматуре, подвергаемой растяжению при изгибе; начинаются с края растянутой зоны и заканчиваются в зоне нулевой линии.

5

Трещины
сдвига

Образуются из трещин при изгибе, в большинстве случае проходят диагонально по отношению к оси арматурных стержней, проявляются в зоне поперечного усилия.

6

Сквозная
трещина

Проходят через все поперечное сечение, проявляются при центральном растяжении или при растягивающем напряжении с небольшой внецентричностью.

7 Объединенная трещина Проходят параллельно стержням арматуры. Эти трещины проявляются, прежде всего, в зоне анкерного скрепления арматур

Растягивающее напряжение может образовываться также между различными элементами конструкции, если один элемент бетонируется как новая секция, укладываемая на старую. Свежеуложенный бетон выделяет тепло, в то время как бетон первой очереди строительства уже остыл и затвердел. При охлаждении того элемента, который бетонировался позднее, происходит его сужение, которому препятствует сцепление с первым элементом (внешнее давление, «продольное напряжение»).
На рис. 3 схематически представлена зависимость температуры и напряжения вследствие внешнего давления согласно. Временная зависимость кривых разделена на 5 стадий:

Стадия I (от 0 до 2 часов)
Начальная стадия без повышения температуры (период покоя)
Стадия II (от 2 до 6 часов)
Повышение температуры вследствие гидратации, измеримое напряжение отсутствует, так как в еще пластичном бетоне тепловые расширения преобразуются в относительное сжатие. В конце этой стадии температура обозначается как «первая температура при нулевом напряжении» T01.
Стадия III (от 6 до 9 часов)
Дальнейшее нагревание бетона, прочность бетона увеличивается и образуется сжимающее напряжение, частично снижающееся за счет релаксации. Стадия III заканчивается при достижении максимальной температуры Tmax.
Стадия IV (от 9 до 11 часов)
Преобладает теплоотдача: температура бетона и сжимающее напряжение в бетоне снижаются, часть сжимающегося напряжения уменьшается за счет релаксации. Достигается «вторая температура при нулевом напряжении» T02, которая по скорости охлаждения и возрасту бетона значительно превышает T01.
Стадия V (от 11 до 15 часов)
Дальнейшее охлаждение и увеличивающееся растягивающее напряжение, которые частично уменьшаются за счет релаксации. Если растягивающее напряжение достигает предела прочности бетона при растяжении (при ATkrit), образуются сквозные трещины.
Если в результате этой нагрузки (температура, усадка) растягивающее напряжение достигает предала прочности, то бетон разрывает. Ранее и позднее образование трещин представлено на рис. 4.

2. Виды трещин и характер их расположения

Обзор различных видов трещин и признаков их возникновения представлены в таблице 2.
Различают приповерхностные трещины (насечки) и сквозные трещины. На рис. 5 и 6 изображены трещины стен, чаще других образующиеся на практике.
Поверхностные трещины образуются, например, из-за слишком большой разницы температуры и влажности между ядром и оболочкой. Они уходят вглубь на несколько сантиметров и через несколько недель снова закрываются. При этом выявляется следующая закономерность: поверхностные трещины чаще всего проявляются в свежем бетоне тогда, когда разница между температурой ядра и оболочки превышает 20 К.

Рис. 4: Набор прочности бетона, а также образование напряжения от давления и нагрузки в строительных элементах из свежего бетона.

Сквозные трещины могут бразовываться, например, тогда, когда сплошной строительный элемент бетонируется на уже затвердевший фундамент (рис. 6).
В большинстве случаев сквозные трещины проходят вертикально к контактной поверхности поперек всей конструкции.

1. Предотвращение образования трещин

Опасность образования трещин или их уменьшение можно избежать с помощью технологических, строительно-технических и конструктивных мероприятий. При необходимости нагрузка от давления может восприниматься арматурой.
Технологические меры описаны в спецификации по массивному бетону. Они ссылаются на низкое выделение тепла в бетоне, низкую температуру бетона,

Рисунки виды трещин
a) низкие стены: трещины начинаются над опорной плитой и поднимаются к верхнему краю стены
b) высокие стены: трещины начинаются над опорной плитой, но часто заканчиваются под верхним краем стены; расстояние между трещинами меньше, чем в низких стенах
Таблица 3: Ориентировочные расстояния между швами в горизонтальных строительных элементах

Строительный элемент

Максимально допустимое расстояние [м]

Бесшовный пол на
открытом воздухе
Бесшовный пол в
помещении
Дорожное покрытие
Кровельное покрытие
(теплая крыша)
Кровельное покрытие
(холодная крыша)
Междуэтажное
перекрытие

от 2 до 4
от 4 до 6
от 4 до 7
от 4 до 6
от 10 до 15
от 20 до 30

В неармированном бетоне расстояние между швами не должно превышать, как правило, 5 м.

Таблица 4: Ориентировочные расстояния между швами в вертикальных строительных элементах в зависимости от разности температур

Разность температур [K]

Максимально допустимое расстояние [м]

< 20

от 20 до 40

от 20 до 30

от 10 до 20

от 30 до 40

от 6 до 10

от 40 до 50

от 4 до 6

В неармированном бетоне расстояние между швами не должно превышать, как правило, 10 м.

Таблица 5: Ориентировочные расстояния между швами в вертикальных строительных элементах в зависимости от их толщины

Толщина строительного элемента [см]

Максимально допустимое расстояние [м]

до 30

от 10 до 20

от 30 до 60

от 8 до 15

от 60 до 100

от 6 до 10

от 100 до 150

от 5 до 8

от 150 до 200

от 4 до 6

В неармированном бетоне расстояние между швами не должно превышать, как правило, 10 м.

Таблица 5: Требования по ограничению ширины трещин согласно DIN 1045-1

Класс
экспозиции

Расчетные значения ширины трещин wk [мм] для строительных элементов из железобетона

XC1

0,4

XC2, XC3, XC4

0,3

XD2, XD2, XS1,

0,3

XS 2, XS3

 

XD3

специальные мероприятия

Для специальных строительных элементов, например, мостов, сооружения, подвергаемые воздействию воды под давлением, емкости, «белая ванна», плоская бетонная крыша, гаражи, предварительно напряженные строительных элементы и т.д. могут предъявляться более высокие требования в отношении ширины трещин незначительное содержание цементного клея и низкое водоцементное отношение и действуют также для других строительных элементов из бетона. Так как при высоком содержании воды в бетоне и низкой теплотой гидратации цементного камня усадка бетона увеличивается, содержание воды должно быть ограничено до 170 л/м и проведено оптимальное выдерживание. При одновременном высыхании и охлаждении содержание воды более 170 л/м3 уже при небольшой разности температур может привести к образованию трещин. Высокая скорость ветра при низкой относительной влажности воздуха даже для бетона с содержанием воды ниже 170 л/м представляет опасность из-за большого испарения воды и образующегося при испарении на поверхности бетона понижения температуры.
При строительно-технических мерах следует особенно подчеркнуть укладку бетона и, прежде всего, тщательное выдерживание.

К конструктивным мерам относятся, например:
- Предотвращение большого изменения поперечного сечения в основании и стенах,
- Предотвращение сцепления в грунте (смещения)
- Предотвращение местного напряжения (например, углубления).

Можно проводить принципиальное различие между ограничением образования трещин с помощью размещения швов и ограничения ширины трещин с помощью арматуры. Для специальных сооружений оговаривается создание предварительного напряжения.
В отдельных случаях необходимо, прежде всего, определить, можно ли с помощью технологичных, строительно-технических или конструктивных мер предотвратить или уменьшить образование вынужденных напряжений. Только если будет установлено, что подобного рода меры будут недостаточны или их осуществление по тем или иным причинам не возможно, должно быть предусмотрено использование специальной арматуры.
Ограничение образования трещин
Необходимое расстояние между швами зависит от температуры свежеприготовленной бетонной смеси и температуры окружающей среды, свойств исходных веществ и бетона (прочность, модуль упругости, коэффициент теплового расширения, коэффициент ползучести), а также от размеров строительного элемента.
Ориентировочные значения для расстояния между швами в горизонтальных строительных элементах приведены в таблице 3, ориентировочные значения для расстояния между швами для вертикальных строительных элементов представлены в таблицах 4 и 5.
При условии соблюдения всех технологичных мер и безупречного производства и укладки бетона упрощенно можно представить следующие расстояния между швами

Расстояния между швами a в основаниях сооружений неармированные промышленные полы и др., бетонированные на открытом воздухе a ≤ 6 м и a ≤ (33 x толщину строительного элемента) в квадратных плитах или a ≤ (30 x толщину строительного элемента) в прямоугольных плитах Расстояния между швами a в стенах
- при толщине стены d=0,30-20м a≤9м-2,5 d
- рабочие швы a ≤ (2,5 х высоту строительного элемента)
- ложный шов a < (2,0 х высоту строительного элемента)
Необходимо выполнить швы соответствующей формы и при необходимости уплотнить их.

Ограничение ширины трещин
Если нельзя предотвратить давление, приводящее к образованию трещин, или нельзя сделать достоверных предположений об ожидаемой вынужденной нагрузке, для ограничения ширины трещин используется арматура.
Согласно DIN 1045-1 : 2001-07 ширину трещин необходимо ограничивать таким образом, чтобы не нарушить соответствующую эксплуатацию несущей конструкции, а также ее внешний вид и долговечность как следствие трещин. Требования по ограничению ширины трещин представлены в таблице 6.

4. Оценивание швов

Очень часто образование трещин может объясняться ошибками в проектировании (например, слишком большие расстояния между швами, недостаточные технологические меры, а также неполные или неправильные основы расчета) и ошибками в изготовлении (например, неправильное положение или расположение арматуры, недостаточное уплотнение, а также недостаточное или неправильное выдерживание бетона). Зачастую причинами возникновения трещин одновременно могут быть различные причины. Оценку влияния трещин на несущую способность, пригодность к использованию и долговечность проводит квалифицированные специалист или, если предусмотрен ремонт, «компетентный планировщик». Он должен определить причину возникновения трещин и предоставить данные о необходимости и виде их обработки. При образовании трещин вследствие нагрузки или давления, прежде всего путем проверки исходных данных, для расчета необходимо определить, возникли ли они из- за плановых или непредусмотренных усилий.

Кроме этого особое значение имеет то факт, является ли чрезмерная нагрузка однократной или повторяющейся. Если нагрузка носит неоднократный характер, то существует опасность, что в бетоне рядом с динамически связанной заделанной трещиной возникают новые. Если нельзя устранить причины, которые привели к образованию трещин (например, расположение теплоизолирующего покрытия для ограничения температурной продольной деформации), то успех может иметь упругое соединение на длительное время краев трещины.
До тех пор пока трещины в бетоне не превышают определенную ширину w, определяющим для длительной антикоррозионной защиты арматуры является не сама ширина трещины, а толщина и плотность бетона в зоне трещины. Если оба признака соответствуют приведенным в стандарте DIN 1045 требованиям, то трещины, расположенные в поперек арматуры размером до 0,4 мм и вдоль арматуры размером 0,3 мм как правило не приводят к значительного снижению долговечности. В любом случае уже при незначительной ширине трещин их необходимо заделывать, если сооружение или строительный элемент подвергаются особым условиям эксплуатации или воздействиям вредных веществ (таблица 7).
Ширину трещин в сооружении можно определить с помощью сравнительного масштаба толщины штриха или ширины трещин. Этот метод допускает различия в ширине трещин 0,05 мм, что в целом оказывается достаточным. Еще более точным (до 0,01 мм) является использование лупы для измерения трещин с подсветкой, однако из-за в большинстве случаев нерегулярного характера расположения трещин такой метод оказывается практически бесполезным. Каждое измерение (ряд измерений) должны сопровождаться указанием даты, времени, погодных условий и температуры строительного элемента, что позволяет провести более корректную оценку результатов измерения.
Не менее важным параметром, чем ширина трещин w, для успешных мероприятий по ремонту при подвижных трещинах является определение измерения ширины трещин Dw. Их размер имеет решающее значение при выборе соответствующего заполнителя, а также для оценки пригодности системы защиты поверхности по закрытию трещин.
Измерения ширины трещин могут носить кратковременный (например, вследствие нагрузки от транспортных средств), ежедневный (из-за разности дневной и ночной температуры) и долговременный (из- за сезонных колебаний климата) характер. Часто влияния наслаиваются, частично также с необратимой продольной деформацией, например, укорочение в результате усадки. Неподвижные трещины на практике встречаются редко.

Таблица 7: Допустимая ширина трещин в железобетоне согласно

Условия окружающей среды

Допустимая ширина трещин [мм]

Сухой воздух или
защитное покрытие
На открытом воздухе,
высокая влажность
воздуха, грунт
Размораживающие
соли
Морская вода, зона
водообмена
Резервуары для воды

0,40
0,30
0,18
0,15
0,10

Качественно определить движение трещин можно с помощью гипсовых слепков. Точный размер изменений ширины можно выполнить с помощью измерительных часов. С помощью индуктивного датчика перемещения с большой точностью (0,01 мм) можно определять и непрерывно фиксировать кратковременные перемещения.
Точная оценка трещин в бетоне часто затрудняется из-за влажности, загрязнений или выветривания. Перед проведением последующих мероприятий (прежде всего, перед пропиткой) необходимо регулярно очищать зону трещин. Кроме этого, для правильного выбора наполнителя и при необходимости времени ремонта необходимо определить, является ли трещина сухой, влажной или водоносной. В исключительных случаях, например, при внешне очень широких преждевременных усадочных трещинах для исследования профиля трещин
можно взять также керн. При определенных обстоятельствах трещина может быть заполнена эпоксидной смолой, чтобы при взятии керна не произошло изменение геометрии трещины.

5. Ремонт трещин в свежем бетоне

Не каждая трещина должна рассматриваться как повреждение или дефект бетона. Прежде чем отремонтировать трещины необходимо выяснить, необходимо ли это. Следующие указания предусмотрены для небольших работ на строительной площадке, а не в качестве мер по ремонту.
В свежем бетоне трещины необходимо как можно раньше закрыть путем втирания цементного шлама (состав смеси: 3 кг цемента на 1 л воды и при необходимости добавление разжижителя или пластификатора).

Кроме этого от случая к случаю могут помочь приведенные ниже мероприятия.
Поверхностные трещины в виде сетки можно отремонтироваться следующим образом:

- Сначала путем равномерной затирки пеностеклом или с помощью щетки с жесткой щетиной необходимо очистить бетон от прилипших мелких наслоений.
- Удалить продукты истирания с помощью мягкой щетки или отсасывания.
- Покрыть поверхность с трещинами замазкой (использовать готовый раствор или приготовленный из цемента с классом прочности 32,5 N или 32,5 R и устойчивого к омылению распыления акриловой смолы).
- После удаления раствора еще раз затереть поверхность, особенно по краям, с помощью пеностекла. Для придания оптического вида при необходимости покрыть лазурью.
Для сквозных трещин, которые являются неподвижными, можно предпринять следующие меры:
- Расширить трещину, освободить свободные частицы путем отстукивания и затем прочистить трещину с помощью стальной щетки.
- Бока трещины обмести плоской кисточкой или обдуть сжатым воздухом, не содержащим масла.
- Вдавить раствор с мелкозернистым песком (пример, готовый продукт с гидравлическим вяжущим веществом или из цемента класса прочности 32,5 N или 32,5 R, кварцевой муки и распыления акриловой смолы) в углубление трещины и выровнять заподлицо с поверхностью бетона.
- При необходимости покрыть поверхность тонким слоем замазки и натереть с помощью пеностекла
.