Заполнители зернистые заполнители с повышенным содержанием кристаллизационной воды
Упрощенные методы испытания цементно-глиняных растворов
Как видно, используемый прием имеет лишь то единственное отличие от обычно применяемого метода колориметрической пробы песка, что весовое количество испытуемой глины не устанавливается, а устанавливается лишь определенное соотношение между навеской глины и раствором едкого натра. Это изменение было сделано с той целью, чтобы полевые лаборатории имели возможность применить любую стеклянную посуду для этой пробы. Естественно, что и эталонный образец должен также находиться в посуде того же размера и того же качества стекла. Вместе с тем, как это можно видеть из сопоставления с данными, не наблюдалось достаточно хорошего совпадения между результатами колориметрической пробы и содержанием гумуса, определенным непосредственными химическими анализами. Учитывая, однако, широкое распространение колориметрической оценки пригодности песков, мы считаем все же возможным пользоваться ею и для оценки качества глин впредь до разработки иных методов. Это тем более допустимо, что неизвестно, какие именно формы гуминовых веществ могут быть вредными для цемента; колориметрическая же проба песков считается достаточно оправданной в практическом применении.
Прокатный бетон для дорожных покрытий
= 4,5 М. -%) 125 кг/м3 Природный песок 0/2 мм 596 кг/м3 Базальтовый щебень 2/5 мм 298 кг/м3 Базальтовый щебень 5/8 мм 298 кг/м3 Базальтовый щебень 8/11 мм 252 кг/м3 Базальтовый щебень 11/16 мм 366 кг/м3 Базальтовый щебень 16/22 мм 366 кг/м3 Таблица 2. Пример состава смеси для несущего слоя класса прочности WB 35 (место стоянки автомобилей) Портландцемент CEM I 32,5 R 270 кг/м3 Летучая зола каменного угля 140 кг/м3 Вода 134 кг/м3 Песок 0/2 мм 681 кг/м3 Гравий 2/8 мм 750 кг/м3 Базальтовый щебень 8/16 мм 513 кг/м3 Содержание воды: -Оптимальное содержание воды woпт. определяется с помощью модифицированного испытания по Проктору. В зависимости от строительной смеси водосодержание составляет от 4 до 7 % от массы к сухому весу строительной смеси. При этом оно соответствует водоцементному отношению от 0,3 до 0,6.
Дорожное строительство с гидравлически связанным несущим верхним слоем
Для искусственных минеральных веществ и стройматериалов из вторичного сырья необходимо иметь дополнительное подтверждение о гидротехнической безопасности. Таблица 1: Доля фракции зернового состава в смеси минеральных веществ для HGD и HGTD в соответствии с ZTV LW Применение Фракция Доля фракции зернового состава в смеси минеральных веществ в % по массе <0,063 мм >2,0 мм Самая крупная фракция Негабарит HGD 0/16 ≤ 15 60 - 80 ≥ 10 ≤ 10 HGD, HGTD 0/22 ≤ 15 60 - 80 ≥ 10 ≤ 10 HGTD 0/32 ≤ 15 60 - 80 ≥ 10 ≤ 10 Таблица 2: Испытание на устойчивость к морозу гидравлически связанного несущего верхнего слоя в зависимости от процентного содержания мелкодисперсной фракции в смеси минеральных веществ. Доля мелкодисперсной фракции в смеси минеральных веществ < 0,063 мм < 5 % от массы < 5 % - 15 % от массы >5 % от массы Испытание морозом не требуется При проверке пригодности необходимо подтверждение достаточной устойчивости к морозу путем испытания морозом в соответствии с TP HGT-StB* Нет достаточной устойчивости к морозу На устойчивость к морозу затвердевшей строительной смеси значительное влияние оказывают тип и процент содержания мелкодисперсной фракции < 0,063 мм в смеси минеральных веществ: высокий процент мелкодисперсной фракции оказывает негативное влияние, если она содержит большее количество составляющих, которые имеют способность к набуханию (глина, ил). Исходя из этого содержание мелкодисперсной фракции менее 0,063 мм должно быть ограничено до 15 % от массы. При выборе состава смеси минеральных веществ для определенного назначения следует учитывать требования, указанные в таблице 1 (таблица 3. 2 в ZTV LW).
Повторное использование стройматериалов в дорожном строительстве
Зернистые заполнители с фракциями менее 2 мм в любом случае посыпают природным песком. Рис. 2. Прочность при сжатии несущего гидравлически связанного слоя, изготовленного из разных исходных материалов в зависимости от содержания цемента Содержание цемента [% по весу] (PZ 35 F) Необходимые прочностные свойства должны соответствовать требованиям норм ZTV Beton-StB. Тип и минимальное количество цемента, а также доля мелкого песка определяются согласно предписаниям. Для бетонного щебня необходимо учитывать и после процесса укладки задавать больший расход воды. Минимальное содержание воздуха свежеприготовленной бетонной смеси должно составлять 4,5-5,0 % от объема.
Подготовка и укладка бетонной смеси на строительных площадках
д. может происходить уменьшение количества воздушных пор. Проектировщик, производитель и потребитель бетонной смеси должны согласовать между собой время, когда смесь должна содержать необходимое количество воздуха, так как в соответствии с этим временем определяется время проведения испытаний. Содержание воздушных пор может колебаться в зависимости от температуры воздуха. Дополнительное добавление воды после основного смешивания, например, в бетоносмеситель на строительной площадке, не разрешается кроме случаев, предусмотренных планом.
Трещины в бетоне, спецификация цемента
могут предъявляться более высокие требования в отношении ширины трещин незначительное содержание цементного клея и низкое водоцементное отношение и действуют также для других строительных элементов из бетона. Так как при высоком содержании воды в бетоне и низкой теплотой гидратации цементного камня усадка бетона увеличивается, содержание воды должно быть ограничено до 170 л/м и проведено оптимальное выдерживание. При одновременном высыхании и охлаждении содержание воды более 170 л/м3 уже при небольшой разности температур может привести к образованию трещин. Высокая скорость ветра при низкой относительной влажности воздуха даже для бетона с содержанием воды ниже 170 л/м представляет опасность из-за большого испарения воды и образующегося при испарении на поверхности бетона понижения температуры.
Общие условия практического применения глин
Необходимое время смешивания зависит от принятого соотношения между цементом и глиной, а также от крупности песка. Чем больше глины вводится в раствор, чем мельче применяемый песок и чем больше содержание песка по отношению к цементу, тем больше должно быть время смешивания. В среднем можно считать, что для различных случаев необходимо нижеследующее минимальное время смешивания (табл. 3). Следует еще раз отметить, что наличие непромешанной глины в цементно-глиняном растворе может привести к целому ряду серьезных дефектов кладки, так как такая глина будет обладать всеми нежелательными свойствами, присущими обычному глиняному раствору, а именно: а) невозможность отвердевания во влажных условиях; б) способность размокать и выжиматься из швов, что поведет к осадке кладки и, возможно, к частичному появлению в ней трещин; в) способность пучиться вследствие замораживания во влажном состоянии, что может повести к расстройству кладки в целом.
Несущие слои из дренажного бетона
Несущие слои из дренажного бетона реагируют даже на незначительное снижение содержания воды, что отражается на их прочности. При использовании заполнителя из остаточного бетона содержание воды и цемента увеличивается (смотри таблицу 2). Таблица 2: Эмпирические данные по составу смеси согласно Компоненты Содержание в % от массы Содержание в кг/м3 Цемент от 8 до 12 % от массы зернистого заполнителя от 150 до 2201) Вода от 3 до 6 % от массы цемента + зернистого заполнителя (твердое вещество) от 60 до 901) Песок 0/1 или 0/2 мм Щебень 8/22 или 8/32 мм 10 % от массы зернистого заполнителя 90 % от массы зернистого заполнителя от 150 до 180 от 1500 до 1600 1) Более высокие показатели используются для вторичного бетона Высокое содержание цемента и песка способствует линейному повышению предела прочности при сжатии, однако снижает содержание пустот и водопроницаемость. В то время как вследствие повышенного содержания цемента содержание пустот уменьшается незначительно, повышение содержания песка приводит к существенному уменьшению. Это следует учитывать, прежде всего, при смешивании на месте.
Керамическая брусчатка и клинкерная брусчатка
был выпущен дополнительный стандарт: DIN 18503:2003-12. Новый стандарт DIN 18503 содержит полное регулирующее содержание стандарта DIN EN 1344 и дополняет критерии «водопоглощение» и «суммарная плотность в сухом состоянии», которые имеют решающее значение для качества клинкерной брусчатки. Клинкерные плиты Согласно определению документа, клинкерные плиты в прямоугольном и квадратном форматах отличаются от керамической брусчатки тем, что у них соотношение наибольшей длины к толщине является больше 4. Клинкерные плиты должны удовлетворять тем же требованиям, что и керамическая брусчатка / клинкерная брусчатка. В отличие от этого, поперечная разрушающая нагрузка для клинкерных плит толщиной ≤ 45 мм должна соответствовать требованиям для категории T2 по Таблице 1.